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Ecography Copious questions in global change biology require estimates of climatic suitabil-
2025: 07881 ity for species in the past or future, often via transfers of ecological niche models
doi: 10.1002/ecoe.07881 (ENMs) using outputs from global circulation models (GCMs). However, available

T & GCMs differ markedly, affecting hindcasts and forecasts of species potential distri-

Subject Editor: Kate Lyons butions. We propose using demographic inferences based on genetic data (indicative
Editor-in-Chief: of either population-level continuous occupation or postglacial colonization) to test
Christine N. Meynard which GCM leads to a better match with reality for ENM hindcasting. We implement
Accepted 22 August 2025 an intuitive worked example for four isolated focal populations of a montane shrew

Cryprotis mexicanus in central-eastern Mexico, by comparing suitability maps at the
Last Glacial Maximum (LGM) and today. We built an optimized Maxent niche model
and transferred it to the LGM based on four GCMs (CCSM4, IPSL-CMS5A-LR,
MIROC-ESM, MPI-ESM-P), followed by phylogeographic analyses to test hypoth-
eses of changes in distribution according to each GCM. CCSM4 and IPSL-CM5A-LR
indicated an LGM suitability area for C. mexicanus mainly in the southern portion of
its range, suggesting that extant focal populations to the north result from postglacial
colonization. In contrast, MIROC-ESM and MPI-ESM-P indicated LGM suitability
for three or all the populations, respectively. Genetic results for the four focal popula-
tions showed high genetic diversity and signals of constant population size. Because
only the hindcast based on MPI-ESM-P generated the prediction of stable occupation
for all four sites, we interpret that its estimate (a cold and wet LGM climate) best
approximates reality for this system. Future studies can apply this framework using
more extensive genetic or genomic data and finer temporal resolutions, also exploring
differences in the assumptions and methodologies underlying the various GCMs.
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Introduction

Understanding species distributions through time is one of
the major areas of research for biodiversity and global change
biology. These include both forecasts of future distributions
and reconstructions of past ones. As a complement to con-
sideration of land cover, dispersal barriers, and traits related
to dispersal ability and population growth, researchers often
employ a suite of techniques usually termed ecological niche
modeling (ENM) or species distribution modeling to char-
acterize a species’ environmental associations and hence pre-
dict suitability across the study region (Soley-Guardia et al.
2019, Franklin 2023). Typically built with recent occur-
rence records and climatic data, such models can be applied
to climatic scenarios in the past or future to estimate suit-
ability — the species’ potential distribution — at those times
(Guevara et al. 2019, Guevara 2020).

Transfers of ENMs across time rely on data regarding
climatic scenarios estimated by global circulation models
(GCMs), which are mathematical representations of the phys-
ical processes regulating climate (Braconnot et al. 2012). For
example, ENMs are often applied to GCM estimates for the
Last Glacial Maximum (LGM), the most recent glacial epi-
sode of the Pleistocene, which is known to have significantly
influenced the divergence, demography, and genetic variabil-
ity of present-day populations and species (Clark et al. 2009,
Wyatt et al. 2021). Despite the particularities of each glacia-
tion that occurred during the Quaternary, the LGM can also
serve as a proxy for the major distributional shifts expected
during global cooling events (Paillard 2015). Considering
the inherent uncertainties in estimates of past — and future
— climates, various GCMs have been developed by different
research groups, each using a particular set of initial states,
equations and algorithms to simulate the climate. Given
these differences, GCMs frequently exhibit notable varia-
tions in estimated climates (e.g. regarding cooling intensity
and precipitation regimes) across the planet (Knucti 2008,
Varela et al. 2015). Transferring ENMs onto the output of
these different GCMs greatly impacts the reconstruction
of cross-time potential distributions (Peterson et al. 2018,
Guevara 2024). For example, when two GCMs vary mark-
edly regarding precipitation and temperature, they can yield
distinct divergent estimates of the species' past potential
ranges (Guevara et al. 2019).

Despite high variation in estimated potential distributions
based on different GCMs —and the great importance of ENM
transfers to global change biology — little guidance exists for
selecting GCMs (Varela et al. 2015, Guevara et al. 2018,
Hausfather et al. 2022). Given this lack of established proto-
cols, researchers employing niche models to reconstruct paleo-
distributions usually choose one a priori or make an ensemble
of predictions based on using two or more (Collevatti et al.
2013, Gassert et al. 2013, Guevara et al. 2019). The difliculty
in selecting GCMs for estimating hypothesized paleodistri-
butions is exacerbated by the lack of knowledge about past
climates in many regions of the world, particularly in tropical
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and subtropical areas. Indeed, palacoecological data (primar-
ily fossilized pollen samples from lake sediments) in these
regions remain sparse and sometimes contradictory regarding
whether past glacial times were characterized by intense cold
accompanied by drought or abundant precipitation (Bush
and Silman 2004, Ramirez-Barahona and Eguiarte 2013).

Because intraspecific patterns of genetic diversity reflect
the demographic history of populations, they represent
a potential data domain to inform GCM selection. For
instance, high levels of intra-specific genetic diversity (e.g.
high numbers of mitochondrial haplotypes or high diversity
in microsatellite loci) can signal high past population sizes,
which could be associated with climate stability over time
(Carnaval et al. 2009). In contrast, low diversity is often asso-
ciated with decreases in population size or genetic bottlenecks
(Lande 1988, Beheregaray et al. 2003, Li and Durbin 2011).
Examples include Pleistocene refugia, where many different
species endured the glacial periods of the Quaternary and each
maintained high population sizes if the suitable area was large
enough, typically preserving high levels of genetic diversity in
those populations. Additionally, post-glacial expansion out of
refugia could lead to low genetic diversity in current popula-
tions farther away from the area inhabited during the glacia-
tion (Petit et al. 2003, Galbreath 2011). Coalescent methods
provide a complementary approach to trace ancestral lineages
and estimate likely ancestral origins (Excoflier et al. 2009),
and thus infer historical population structure and range
expansion, which can serve as benchmarks for improving
GCM selection. Indeed, the combination of ENM and phy-
logeography has contributed to a greater understanding of
the historical demography of species, their patterns of genetic
variation, and the abiotic conditions where their populations
diversified (Alvarado-Serrano and Knowles 2014, Luna-
Aranguré and Vizquez-Dominguez 2020, 2021). Abiotic
variables are essential in phylogeography, given their influ-
ence on processes such as isolation, divergence, and specia-
tion, and are also the backbone of ecological niche modeling
(Kozak et al. 2008). We propose further development of this
longstanding integration of ENM and phylogeography, har-
nessing genetic data to promote a holistic consideration of
different data streams and analyses (Franklin 2023).

Here, we aim to help fill the void regarding GCM selec-
tion by proposing a framework for analyzing the genetic
signals in a modern species to glimpse back into the past,
with the goal of identifying which GCMs provide the most
reasonable reconstructions of past conditions in a specific
geographical region. By applying a niche model to present
conditions as well as reconstructions of climate at the LGM,
it is possible to hypothesize changes in the species’ distribu-
tion under various respective GCMs. Specifically, by compar-
ing maps of present suitable conditions with those for past
climates (under each of the GCMs), researchers can make
explicit predictions regarding distributional changes and
demographic history for different populations across the spe-
cies’ current range (Alvarado-Serrano and Knowles 2014,
Worth et al. 2014, Cabanne et al. 2016, Luna-Aranguré and

85UBO1 ] SUOLULIOD) AR |01 e 8 AQ PGB 918 3 p1Le WO ‘38N J0 S| 1oy AXeiq178U1IUO 3] UO (SUOIPUOD-PUB-SLLLBI WD A3 1M ATRIGI PUIIUO//SANL) SUOIPUOD PUE SWLR | 8L 385 *[5202/0T/TZ] Uo A%iq18UIIUO AB1IM ‘53 L Aq T88.0'6008/Z00T 0T/10p/LIC" A8 ARe.1Bu 1 UO'S eUIN0 osUy/Sdy Woa) papeo|umod ‘0 */850009T



Vizquez-Dominguez 2020, 2021). These predictions will
depend on the GCM used (Guevara et al. 2018, Guevara
2024). Then, phylogeographic analyses of genetic data can
be used to test which paleodistributional hypothesis led to
demographic predictions that most closely align with the
genetic evidence, consequently supporting which GCM
would be most realistic for a given region.

As an implementation of this framework, we assess signals
of genetic diversity and demographic changes in response
to climatic shifts during the last glacial-interglacial transi-
tion in the Mexican small-eared shrew Cryprotis mexicanu
(Soricidae), a small mammal highly associated with cloud
forest in the northernmost Neotropics (Guevara et al. 2018).
Cloud forest species are an excellent system to illustrate this
framework since even minimal changes in temperature and
precipitation can affect their geographic distribution. We
start with an optimized niche model, estimating the species’
potential distribution in the present and during the LGM
according to four GCMs. Then, based on the distributional
changes from each of the hypothesized paleodistributions to
the present, we establish two general predictions regarding
the expected genetic/demographic signals across different
portions of the species’ current distribution according to each
past climatic scenario: 1) areas of continuous suitability over
time and hence predicted constant population size and high
genetic diversity; 2) areas of postglacial colonization, where
a reduction in past population size and current genetic vari-
ability is predicted. Finally, we test these predictions based on
phylogeographic analyses with data from the mitochondrial
cytochrome b gene (Fig. 1). Whereas the potential exists for
generating massive amounts of genomic data and conduct-
ing advanced computational techniques for analyzing them,
this simple worked analysis serves as an intuitive example for
understanding the fundamental logic and workflow of the
proposed framework.

Occurrence data

T

Hypotheses

T .
CCICENCICION

Material and methods

Optimized niche model

We used georeferenced records of the Mexican small-eared
shrew, C. mexicanus, confirmed through morphological
analysis and used in previous studies (Guevara et al. 2018,
Pinilla-Buitrago 2023, Vilchis-Conde et al. 2023). These
localities constitute a variety of sites representative of the
range of environmental conditions that the species inhabits
(Guevara et al. 2018, Pinilla-Buitrago 2023). To reduce the
effects of spatial sampling bias, which can negatively impact
model performance, we performed a spatial thinning of
5 km around records using the ‘spThin’ ver. 0.2.0 package
(Aiello-Lammens et al. 2015) in R ver. 4.3.2 (www.r-project.
org). The thinning procedure reduced the original database
from 64 to 41 unique localities (Supporting information).
We generated a 0.5 decimal degree buffer around the occur-
rence localities after thinning to delineate the study area and
build niche models. This study area includes environments
that likely have been accessible to this cloud forest species
given its dispersal limitations and the configuration of barri-
ers (Anderson and Raza 2010, Barve et al. 2011).

As predictors, we used four bioclimatic variables based on
30-arcsec monthly precipitation and temperature data from
CHELSA ver. 2.1 (Karger et al. 2017). Based on previous
studies on the importance of various bioclimatic variables on
the distribution of C. mexicanus, these four variables capture
extreme climatic conditions and are the most ecologically
informative (Guevara et al. 2018, Pinilla-Buitrago 2023): the
maximum temperature of the warmest month (BIO05), the
minimum temperature of the coldest month (BIOO06), pre-
cipitation of wettest month (BIO13), and precipitation of
driest month (BIO14). This set of four variables was used
for model calibration based on current conditions and then
transferred to past climatic reconstructions.

Testing
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Figure 1. Illustration of the proposed framework for deciding which general circulation model (GCM) is most realistic in the past in a given
study region. The workflow uses niche modeling and then includes the generation of distributional hypotheses for a species in the present
and in the past based on different general circulation models (GCMs). Next, it makes demographic predictions based on each hypothesis
and performs phylogeographical testing to decide which GCM is most realistic in the past (for the given study system). In this hypothetical
example, the genetic evidence supports the paleodistributional hypothesis generated with the GCM 2. GCM 1 and GCM 3 would be

considered less realistic for this study area.
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We used the maximum entropy method in Maxent ver.
3.4.3 to model a species’ climatic associations and estimate
its potential distribution (Phillips et al. 2017). To ensure a
complete representation of the species’ occupied environ-
ments, we included in the background region all pixels
within the delimited study area. To assess a variety of model
settings and later select those approximating optimal levels
of complexity, we built models with different combinations
of feature classes (Linear; Linear and Quadratic; Hinge;
Linear, Quadratic, and Hinge; Linear, Quadratic, Hinge and
Product) and regularization multipliers (0.5-5.0 with 0.5
step intervals) using ‘ENMeval’ ver. 2.0.4 (Kass et al. 2021),
applying a spatial block approach to cross-validation to yield
model performance statistics. These combinations of feature
classes and regularization multipliers yielded 50 candidate
models.

We used sequential criteria to select the optimal settings
for building the final model. First, we retained the mod-
els with the lowest delta AICc (within four units). Then,
out of those models retained we inspected the number of
parameters in the model and two validation statistics based
on threshold-dependent (omission rate, specifically OR10,
using a threshold set by the 10% training omission rate) and
threshold-independent (AUC for testing points, or AUCval)
measures that helped to gauge performance in terms of over-
fitting and discrimination, respectively (Gerstner et al. 2018).
We examined these and selected as optimal the model with
the fewest parameters (non-zero weights to given features),
then the lowest overfitting (low omission rate), and finally
the highest discriminatory capacity (high AUC) (Supporting

information).

Current and past potential distribution hypotheses

In addition to visualizing the optimal niche model in the
present, we also transferred it to the Last Glacial Maximum
based on four alternative GCMs: the Community Climate
System Model (CCSM4; Collins et al. 2006), Institut Pierre-
Simon Laplace (IPSL-CM5A-LR; Dufresne et al. 2013); the
Model for Interdisciplinary Research on Climate (MIROC-
ESM; Ohgaito et al. 2020), and the Max-Planck-Institute fir
Meteorologiec model (MPI-ESM-P; Giorgetta et al. 2013).
We projected the model to the same extent as the calibration
area. To identify any major differences for each bioclimatic
variable among the conditions estimated by the four GCMs,
we extracted past climatic values for each pixel within the
study area and used descriptive statistics to examine differ-
ences among them (Supporting information).

To extrapolate into non-analog conditions, we inspected
the upper and lower tails of individual response curves of
each variable and the truncation points. This allowed us
to decide whether to use clamping (default in Maxent) or
unconstrained extrapolation (Guevara et al. 2018, Kass et al.
2021). To identify uncertainty due to model extrapolation, we
obtained areas where non-analog conditions occurred com-
pared with the present, using the multivariate environmen-
tal similarity surface (MESS; Elith et al. 2010, Supporting

information).
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To map the suitable areas across the study area, we divided
the continuous predictions into binary ones (suitable versus
unsuitable) using two thresholding rules for comparison of
results: the minimum training presence threshold of Maxent
(MTP; or lowest presence threshold sensu Pearson et al.
2007), and the 10th percentile training presence (10P).
Suitability values above the thresholds were preserved in the
original continuous format (logistic transformation). For
comparison, we also included a map based on the ensemble
of the four GCMs. The ensemble was made by summing the
binary maps with minimum training presence thresholds and
retaining the areas where at least two of the four predictions
coincided. We quantify spatial overlap between resulting
maps using a pairwise Schoener’s D metric in the ‘terra’ pack-
age (Hijmans 2025). This metric varies from 0 (no overlap)
to 1 (full overlap) (Warren et al. 2008).

Genetic predictions and testing
As focal populations for analysis, we focused on four geo-
graphically isolated sites (‘sky islands’) adjacent to the Sierra
Madre Oriental. This allowed us to test discrete predictions
of population-level genetic/demographic signals as hypoth-
esized via the suitability maps obtained using each respective
GCM and a map of their ensembling. The four focal popula-
tions correspond to: 1) El Cielo, 2) Sierra de Otontepec, 3)
Los Mérmoles, and 4) Sierra Norte de Puebla (Fig. 2). The
demographic predictions for each of the four populations
were established by overlaying the current binary potential
distribution map and each of the respective reconstructed
potential paleodistributions. When a given current focal pop-
ulation also had suitable conditions at the LGM, we inferred
that the site would have been continuously occupied (stable
population over time); in contrast, when the LGM retrojec-
tion for a population did not indicate suitable conditions, we
conjectured that the current population would be the result
of post-glacial colonization. For genetic testing, we used cyto-
chrome b sequences. Some of these were previously obtained:
for El Cielo (5 sequences), Sierra de Otontepec (6), and Sierra
Norte de Puebla (7). Additionally, we generated 13 sequences
for Los Mérmoles (Supporting information). DNA extrac-
tion, amplification, and sequencing details follow Guevara
and Cervantes (2014) and Mayen-Zaragoza et al. (2019).
We assessed population genetics via several approaches.
We calculated the number of haplotypes (H), as well as
haplotype (h) and nucleotide (6) diversity, to describe intra-
specific genetic diversity for each of the four focal popula-
tions. We also estimated Fu's Fs (Fu 1997) and Tajima’s D
(Tajima 1989) indices in DnaSP ver. 6 (Rozas et al. 2017)
to evaluate whether data departed from a neutral model of
evolution due to factors such as a population bottleneck or
sudden expansion (Cabanne et al. 2016, Luna-Aranguré and
Vizquez-Dominguez 2020, Rico et al. 2023). We assessed
genealogical relationships among haplotypes by constructing
a median-joining (M]) network in ‘POPart’ ver. 1.7 (Leigh
and Bryant 2015). Additionally, we implemented a Bayesian
phylogeographic and ecological clustering analysis (BPEC)
with ‘BPEC’ ver. 1.3.1 (Manolopoulou et al. 2020) to obtain
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Figure 2. Present potential distribution of the Mexican small-eared
shrew, Cryprotis mexicanus, in central-eastern México. The map
shows increasingly warmer colors of pink and red for higher suit-
ability above the minimum training presence threshold of an opti-
mized ecological niche model, with areas of lower prediction
transparent (showing topography in white-to-gray). The four ‘sky
islands® for the focal populations analyzed are: (A) El Cielo, (B)
Sierra de Otontepec, (C) Los Mdrmoles, and (D) Sierra Norte de
Puebla. Hollow circles denote documented localities for the
species.

measures of uncertainties for haplotype relationships and
identify likely ancestral haplotypes to help infer the histories
of the current samples. Following preliminary short runs, the
final BPEC analysis was done using four maximum migra-
tions, the minimum parsimony relaxation value (zero), and
two runs with 20 million steps in MCMC, with 10 000 pos-
terior samples saved.

Results

Climate during the LGM

The four GCMs displayed notable differences in the estimated
climate during the LGM in the study region (Supporting
information). CCSM4 and IPSL-CM5A-LR suggested
that during the cold months, the minimum temperature
was lower than that calculated by MIROC-ESM and MPI-
ESM-D, with differences as great as 10°C (e.g. between IPSL-
CMS5A-LR and MPI-ESM-P). In contrast, the four GCMs
led to more similar predictions for the warmest month,

except for MIROC-ESM, which did not show as much drop

in temperature. IPSL-CM5A-LR indicated notably high pre-
cipitation during the rainy season, relative to the other three
reconstructions. In contrast, MPI-ESM-P was the only one
that did not suggest extreme aridity during dry months.

Optimal niche model and potential distributions

across time

We selected one of the 50 candidate models as optimal (Linear
and Quadratic, 1.0; AICc=421.015; delta AICc=3.281).
Extrapolations of response curves from that model to non-
analogous conditions were more ecologically realistic when
using the unconstrained approach for most tails of the pre-
dictor variables. However, for the BIO13 variable, we applied
clamping at the upper tail to prevent the species’ response
from continuing to increase beyond the point of truncation.
Because the differences between results for the two thresh-
olds were minimal, we discuss those for MTP since it is more
intuitive and ensures that all occurrence records fall within
the areas indicated as suitable. Detailed information about all
the model results is available in the Supporting information.

Spatial predictions based on the selected model indicated a
medium-to-high current suitability associated with montane
habitats, concordant with natural history information for the
species. Lowlands and the highest-elevation forests lacked
suitable conditions, as did drier highland regions. The cur-
rent potential distribution is more naturally fragmented in
the northern extensions of the Sierra Madre Oriental, with
two of the four ‘sky islands’ appearing as disjunct from the
main body of the Sierra even at this low threshold (Fig. 2).

The predicted geographic patterns of suitability for the
LGM differed across GCMs, with variation in both how
much of the study area was indicated as suitable and in
the spatial patterns of suitability. A consistent pattern of all
reconstructions was a potential paleodistribution farther to
the south than today. The CCSM4 and IPSL-CM5A-LR
scenarios showed the strongest past contractions toward the
south, although they differed notably. Whereas CCSM4
indicated high suitability towards the coastal mountains and
low plains of the Gulf of Mexico, IPSL-CM5A-LR did so
in the interior to the south of the high volcanoes of Central
Mexico (Fig. 3). In contrast, MIROC-ESM and MPI-ESM-P
showed broader potential paleodistributions, although only
the latter suggested suitable conditions in the northernmost
portions of the study area. In quantitative terms, the esti-
mates based on MPI-ESM-P and MIROC-ESM resulted
in the greatest overlap (D=0.811), while CCSM4 showed
the least similarity with the rest of the three scenarios (ver-
sus IPSL-CM5A-LR, D=0.466; versus MIROC-ESM,
D=0.474; versus MPI-ESM-P, D=0.446). The ensemble
map showed greatest similarity to the MIROC-ESM predic-
tion (Supporting information).

The MESS maps also differed substantially among GCMs
(Supporting information). They indicated non-analog con-
ditions at the LGM in the southern section of the species
current distribution according to MIROC-ESM and IPSL-
CM5A-LR. In contrast, CCSM4 and MPI-ESM-P showed
only extremely small areas with non-analog conditions,
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IPSL-CM5A-LR

Continuous

MIROC-ESM

MPI-ESM-P

MTP

Figure 3. Last Glacial Maximum potential paleodistributions of the Mexican small-eared shrew, Cryprotis mexicanus, in central-eastern
Meéxico. The potential distributions are shown according to the transfer of the optimized ecological niche model based on each of the four
general circulation models (see text for abbreviations). For continuous maps (top row), redder colors indicate higher suitability. Binary maps
(bottom row) are based on the minimum training presence (MTP) threshold. The hollow circles depict the four focal populations (on ‘sky-
islands) studied for genetic testing: (A) El Cielo, (B) Sierra de Otontepec, (C) Los Mdrmoles, and (D) Sierra Norte de Puebla.

indicating less pronounced differences between the present

and the LGM.

Generating and testing predictions

The four GCMs and their ensembling led to vastly differ-
ent predictions regarding population history (and expected
genetic consequences) for the four focal sites (Table 1, first

five rows). Because the transfers of the niche model to LGM

climatic conditions based on both CCSM4 and IPSL-
CM5A-LR showed a far-southern refugium of the potential
distribution of C. mexicanus, they suggested that all four cur-

rent focal populations result from postglacial colonization.
On the contrary, MPI-ESM-P indicated long-term persis-
tence of suitable conditions for all four populations (although

Table 1. Genetic predictions, inferred history of ancient localities, results, and interpretations for each of the four focal populations (‘sky-
islands’) of the Mexican small-eared shrew, Cryptotis mexicanus, studied in central-eastern México. Predictions of population history (and
genetic consequences in parentheses) were made according to the integration of current potential distributions and paleodistributions:
1) stable area occupied since the Last Glacial Maximum (high genetic diversity and signal of constant population size), and 2) post-glacial
colonization (low genetic diversity and signal of past population size reduction). The predictions are given for each of the four global circula-
tion models and their ensemble (using the minimum training presence threshold; see Fig. 2).

Global circulation model

El Cielo (A)

Sierra de Otontepec (B)

Los Marmoles (C)

Sierra Norte de Puebla (D)

CCsM4
IPSL-CM5A-LR
MIROC-ESM
MPI-ESM-P
Ensemble
Haplotype diversity
Nucleotide diversity
Tajima’s D
Fu’s Fs
Genetic diversity
interpretation

post-glacial colonization
post-glacial colonization
post-glacial colonization
stable area
post-glacial colonization
1.000
0.005
-0.978
-1.223
stable, larger population

post-glacial colonization
post-glacial colonization
stable area
stable area
stable area

0.654

0.002

1.648

0.758
stable population

post-glacial colonization
post-glacial colonization
stable area
stable area
stable area

0.733

0.002

1.063

1.995
stable population

post-glacial colonization
post-glacial colonization
stable area
stable area
stable area
1.000
0.007
-1.157
-2.309
stable, larger population
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with a notable contraction in the geographic extent and suit-
ability level at the LGM for population A), overall signaling
a constant population size for each of them. MIROC-ESM
showed a paleodistribution similar to that of MPI-ESM-PP
in the southern and central portions of the study region but
differed farther north (with a much smaller area indicated
as suitable). Thus, the MIROC-ESM paleodistribution pre-
dicted long-term persistence for populations C, D and B in
the southern and central portions of the species’ range (with
a marked reduction in area for population B), and post-gla-
cial expansion for population A in the north (Table 1). The
ensemble model led to the same prediction as MIROC-ESM.

Regarding genetic diversity and population-demographic
patterns, all four focal populations showed high diversity. We
identified 18 haplotypes distributed among the four populations,
with no haplotypes shared across sites. El Cielo (population A)
harbored five unique haplotypes, Sierra de Otontepec (B) and
Los Mdrmoles (C) each contained three haplotypes, and Sierra
Norte de Puebla (D) exhibited the highest haplotype count with
seven unique haplotypes. Although the number of haplotypes
per population varied, all sites showed patterns consistent with
high genetic diversity and strong population structure (Fig. 4).
Nucleotide diversity was also high, especially in two of the popu-
lations, namely the northernmost (El Cielo) and southernmost
(Sierra Norte de Puebla), which had the highest values of hap-
lotype diversity (both 4=1.0) as well as higher nucleotide diver-
sity (6=0.005 and 0.006, respectively) compared with Sierra de

(A) (B)

@® ~eEicielo @ (B)Sierrade Otontepec

{ ) (C) Los Marmoles

Otontepec (h=0.73; 6=0.002) and Los Mdrmoles (4=0.065;
6=0.002). None of the values for Fus Fs and Tajima’s D indi-
ces were statistically significant for any of the populations. Thus,
high genetic diversity and non-significant demographic indices
agree with a signal of constant population size. Both the median-
joining haplotype network and the BPEC results revealed four
clusters (each matching one of the populations analyzed), with
no haplotypes shared among populations, numerous unique
(terminal) ones, and no ancestral haplotype sampled (Fig. 4A,
B, C). None of the four populations showed the classical ‘star-
shaped’ haplotype network characteristic of a recently expanded
population (one common haplotype surrounded by uncommon
ones closely related to it; Bandelt et al. 1999). Instead, each com-
prised a network of haplotypes of similar frequencies, related but
separated from each other by one or more mutations. Although
not sampled or likely extinct, the ancestral haplotype was
inferred to have the closest genealogical connection to the cur-
rent haplotype found in the Sierra Norte de Puebla, suggesting
that the most ancient haplotype would be from this population.

Discussion

Estimating potential paleodistributions, especially during
the LGM, has allowed researchers to propose distributional
shifts occurring during the most recent glacial-interglacial
cycle, which are helpful for a better understanding of the

(D) Sierra Norte de Puebla

Figure 4. Phylogeographic analyses among populations of the Mexican small-eared shrew, Cryptotis mexicanus, using cytochrome b sequences
based on four focal populations (on ‘sky islands‘; blue, green, red, and yellow) in central-eastern Mexico. (A) Median-joining haplotype
network. The circle size is proportional to the observed haplotype frequency, black points are missing haplotypes, and the dashed lines
denote mutational steps between haplotypes. (B) Map of results from the Bayesian phylogeographic and ecological clustering (BPEC) analy-
sis, showing the geographic distribution of the haplotypes, contour plots denoting the localities (black triangles) assigned to each of the four
phylogeographic clusters identified, and transparent contour plots indicating uncertainty for each cluster. (C) Clustered tree plot from the
BPEC showing the genealogical relationships among unique haplotypes, where black points are the missing haplotypes (not sampled or
extinct), and the pie chart shows posterior probabilities per cluster for the sampled haplotypes.
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factors and processes generating current distributional pat-
terns (Carnaval et al. 2009, Collevatti et al. 2013). Faced
with such an opportunity, the generation of paleodistribu-
tions has been warmly and prolifically received in systematics,
phylogeography, population genetics and landscape genetics
(Alvarado-Serrano and Knowles 2014, Luna-Aranguré and
Vizquez-Dominguez 2020, 2024, Franklin 2023). The cur-
rent results emphasize first that important variations among
reconstructed paleodistributions due to the use of different
GCMs can be overlooked in the whirlwind of current and
upcoming studies, and second that the field should stop to
consider the need to determine which GCM might be the
most realistic in specific study areas. Not doing so could lead
to results so unrealistic (or with such great bounds of uncer-
tainty) that they cannot be used for biological inferences or
practical applications (Aratjo et al. 2019).

In regions where palynological data are still scarce, like
the biodiversity-rich Neotropics, genetic data can be particu-
larly instrumental in deciding which GCM climate scenario
best matches reality (Guevara 2024). In the current exam-
ple, we employ cytochrome b, a commonly used molecular
marker that is relatively easy to sequence in labs throughout
the biodiverse ‘Global South’, and is available for a relatively
high number of vertebrate populations and species globally,
making it particularly useful for these kinds of questions
(Fonseca et al. 2023). Therefore, the framework we have out-
lined could be applied to this and other regions using the
same or similar markers for other taxonomic groups (e.g.
COl for insects, chloroplast coding regions for plants; Fig. 1).
Additionally, using high-throughput sequencing data, which
includes more complete phylogenetic information, offers rich
data for testing paleodistributions. Such an approach would
ultimately enable researchers to more thoroughly understand,
with less uncertainty, what the past climate may have been
like. More sophisticated analysis strategies can be used with
such data. For example, coalescent simulations over a broad
range of parameter sets derived from the alternative paleodis-
tributional hypotheses can help identify more likely scenarios
in quantitative terms (Prates et al. 2016, Mitka et al. 2023).
Finally, in addition to the genetic data available, future stud-
ies can also take advantage of finer temporal resolutions, for
example, the reconstructions using several timesteps between
the past period and today (Krapp et al. 2021, Barreto et al.
2023, Karger et al. 2023). Such analyses could investigate the
impact of more minor, yet likely significant, Quaternary cli-
matic changes such as the mid-Holocene.

How and to what extent using some GCMs to estimate
paleodistributions — in any given region or worldwide — leads
to erroneous or limited inferences still must be evaluated. In
the present example, we used four paleoclimatic scenarios that
vary substantially between them (Varela et al. 2015). Due to
GCM availability, researchers traditionally have had limited
options for exploring the climate experienced during the LGM.
Until a few years ago, for example, CCSM4 and MIROC-
ESM were the most used GCMs since they were easily acces-
sible in WorldClim, a database of high spatial resolution global
climate estimates (Fick and Hijmans 2017). For the northern
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Neotropics, these two GCMs show notable discrepancies,
especially in terms of precipitation, which leads to clear differ-
ences in reconstructed potential paleodistributions in various
species (Ramirez-Barahona and Eguiarte 2014, Ornelas et al.
2019). CCSM4 has also often been used alone to estimate
paleodistributions without a clear justification (Guevara
2024). In this study, the CCSM4-based paleoreconstruction
for the species is far from matching what the genetic signal of
C. mexicanus suggests; on the contrary, less-used climate sce-
narios appear more realistic (e.g. especially MPI-ESM-P). It is
noteworthy that here, CCSM4 was the GCM that showed the
greatest qualitative and quantitative differences with respect
to the other climate scenarios evaluated (values of Schoener’s
D). The genetic concordance with the MPI-based paleodistri-
bution suggests that, for this region, neither temperature nor
precipitation was so drastically lower than today (e.g. during
the coldest and driest months, respectively), in contrast to
the outputs of other GCMs (Supporting information). Such
climatic interpretations are relevant to copious issues related
to species distributions, such as seasonality, phenology, biotic
interactions, and other broader scientific questions related to
the history of human colonization or plant domestication.

Other critical methodological issues also bear consider-
ation in research reconstructing paleodistributions. Future
studies should also consider the degree of environmental
extrapolation required under each of the GCMs and take the
respective potential distributions with corresponding caution
(Guevaraetal. 2019). For example, in this scudy, IPSL showed
greater extrapolation-associated uncertainty in the southern
part of the species” distribution. Ensemble or consensus maps
are sometimes preferred by averaging or combining all esti-
mated potential distributions based on two or more GCMs
(Diniz-Filho et al. 2015, Sobral-Souza et al. 2015). This may
help identify regions of agreement or lower uncertainty aris-
ing from different estimates—and should reflect the central
tendency of alternative GCMs (Elith et al. 2010, Zhu et al.
2021). However, mixing diverse climate scenarios (some
notably contrasting) dilutes the signal of the better models
and can hinder understanding of the effects of climate change
on biodiversity; therefore, protocols for identifying the best
or most realistic ones and considering them either individu-
ally or in concert hold promise for identifying the most real-
istic scenarios (Hausfather et al. 2022, Paz et al. 2024). The
framework outlined and illustrated here can play an impor-
tant role in doing so, particularly for studies including recon-
structed past distributions, leading to a better understanding
of the effects of climate change on biodiversity.
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